

Role of Imaging in Oncology

Prof. Mária Gődény MD, PhD, DSc National Institute of Oncology

Basic information in Oncology

- Tumor staging is one of the most important prognostic factors, it determines therapy (operability, radio-, chemotherapy planning)
- Imaging is of great importance in cancer management
 DETECTION and EVALUATION of tumor
- Precise evaluation is only possible using strict technical criteria, standard protocols and correct image interpretation our responsibility is high

Role of imaging in the Oncologic Decision Process

early detection, precise tumor mapping, to give information of tumor volume, structure, vascular nature

- **To detect** tumor (to finde the primary and metastasis)
- To stage prior to treatment, T / N / M
 - To give comparable information of tumor volume and structure
 - To finde nodal metastases
 - To finde distant metastases
- To evaluate therapy response
- To fix a baseline status following initial therapy,
- To follow the patient to finde the early recurrent TU
- To restage the tumor for the best therapy

To give information about the "nature" of the disease To perform guided tissue sampling (biopsy)

• Imaging plays an important role also in planning radiotherapy

Imaging modalities

- Anatomic imaging modalities
 - Conventional X-ray mammography (digital)
 - Angiography Digital Subtraction Angiography (DSA)
 - US
 - -CT MD-CT (for tu evaluation ≥ 16 detector rows)
 - -MRI (high magnetic field strength, 1.5T-3T)
- Functional, molecular, metabolic imaging modalities
 - RN
 - SPECT-CT
 - PET/CT
 - DW-MRI, DCE-MRI, MRSI, tissue specific CA-MRI, perfusion CT, CE-US

Functional-, molecular-, metabolic imaging imaging biomarkers in oncology

NEW measurements, qualitative, semiquantitative, quantitative (partly in the routine examinations / partly in clinical research)

Molecular- / functional data

DW-MRI based on: water diffusion restriction because of TU cell density, -integrity, with qualitative-, and quantitative (ADC measurement) information

Perfusion DCE-MRI based on: vascularisation, vascular permeability, with qualitative, semiquantitative (time-enhancement curve) information (may be also quantitative)

<u>**Tissue specific CA**</u> (hepatocyta-, RES specific)

MRSI based on: biochemical status of molecular products

CE-US based on: tumor neo-vascularisation

Perfusion CT based on: perfusion alteration because of tumor vascularisation

<u>SPECT/CT, PET/CT</u> (using isotop tracers, based on: different metabolic processes)

CXR

The role of convenional radiography in the evaluation of tumor cases is limited

To day <u>Digital</u>

- Easy access, cheep
 - <u>Bone</u>
 - <u>Lung</u>
 - Breast
 - Abdomen
 - Gastro-intestinal tract

<u>Tomosynthesis</u> – renewed, digital tomography for the lung and breast

Main QUESTION: is the information enough??

CXR in oncology

BREAST

ENDOSCOPY!

stomach

colon

abdomen Ileus? perforation?

Question:

information

will be enough ??

esophagus Swallowing function

Ultrasonography

excellent for the soft tissue

 Advantages: Easy access, cheep Excellent soft tissue resolution Non invasive, non ionising, good tolerable Real-time information Flow information 	 Disadvantages : Lack of complex information Difficulties in the evaluation of Deep structures Big lesions Lack of bone evaluation Subjective Techniques dependent
 Clinical applications Transcutan – abdominal, pelvic, neck, breast, extremities Endocavital, - rectal, -oesophageal, - endoscopic US Intraoperative US 	 Methods Gray scale Doppler CE-US - HCC arterial, portal, venous, parenchymal phases Doppler US-elastography
 US guided biopsy/drainage 	US is not the standard tool for tumor evaluation

US excellent soft tissue resolution

> BUT lack of complex information

Endorectal US-in rectal ca

Bile duct

Advantages of MD-CT

Complex information of the tumor & tumor spread (for tu evaluation ≥16 detector rows)

- Quick, tolerable, informative
- Whole body information
- High spatial & High contrast resolution
- Volumetric measurement Multiplanar-, 3D information
- Good soft tissue information using contrast agent
- Excellent temporal resolution in the contrast enhanced dynamic phases
- Best demonstration of bone cortex / trabeculae / tiny bone lamellas (*BUT not for the bone marrow*)
- Delineation of calcification

Disadvantage: ionising radiation

Whole body

Bone, spine

mediastinum

Guided biopsy

Guided drainage

MD-CT -Volumetric measurement – Multiplanar-, 3D information

MDCT

Virtual endoscopy

based on volumetric data collection

CT- Angiography

Magnetic Resonance Imaging- MRI excellant multiparametric modality

with High spatial & High contrast Resolution

- Best soft tissue evaluation of intracranial-, perineural spread, spine head and neck, pelvis, upper abdomen, breast, extremities
- Tissue specific information: fat, melanin, blood, etc. Extracellular-, hepatocyta-, RES-specific contrast agents
- Functional information: diffusion-weighted MRI (DW-MRI), dynamic contrast enhanced MRI (DCE-MRI), MR-spectroscopy (MRSI)
- Flow sensitivity
 - MR angiography

Lepto-meningeal TU spread Perineural (N.V.) TU spread

without ionising radiation

Bests of MultiParametric MRI (MP-MRI)

(Using: native T1-,T2-w, with / without FS, CE-T1, DW-, DCE-MR)

- Brain tu– CT+MRI= 80% improvement in assessment of Tu volume
- H&N (best local tu stage, best intracranial-, perineural extension, lgl evaluation) - MRI Acc > 90%
- Liver foci (using also tissue specific contrast agent)
- Pelvis
 - Prostate ca–CT+MR=> 90% -
 - Gynecological tu's MR Acc > 90% -
 - Rectal ca MR Acc >90% improvement in staging

MEDULLOBLASTOMA in the IV. ventricle MRI- CE-T1-w images Best multiplanar evaluation of intracranial tumors

To day: MRI- Basic method

Tissue specific information

Two malignant primary tumors

US – unspecific density It might be metastasis Colon ca / ocular malignant melanoma

MRI: specific for MM metastasis

High signal intensity T1-*w foci in the liver - because of melanin content*

DG: MM mets

MP-MRI – anatomic and functional measurements in mesopharynx CA (native T1-,T2-w, CE-T1FS, DW-, DCE-MR)

MR spectroscopy (MRSI) – (biochemical analysis of molecular products) Recurrent brain tu- could be detected earlier

Tumor side (R)

Normal side (L)

NAA

Cholin

Cholin pick

NAA N-acetylaspartate

Whole body MRI

Sensitive and specific for bone marrow changes (metastasis)

- T1-w
- STIR
- + DW-MR
- + CE-T1FS

PET/CT: hybrid modality anatomic - metabolic imaging

- **PET/CT** hardware fusion of PET and CT
- Whole body- complex information of the
- PET: sensitive for metabolic activity-
 - Tracer FDG (F18FluoroDeoxyGlucose) glucose alternative
- **CT: basic anatomic** information
- Clinical applications: ≈90% oncology
 - Staging distant metastasis
 - Therapy response
 - Postherapeutic evaluation
 - To detect recurrent tumor
 - Restaging
 - To seek unknown primary

• **PET/MR**: promising data – one-stop-shop examination (COSTS?)

FDG-PET/CT

Two primaries

- 1. Radix linguae + N met
- 2. Non-Hodgkin-Lymphoma in the abdomen

FDG-PET/CT – whole body information three primary tumors (left mesopharynx-, right breast-, cholangio ca)vasol

Tasks of Interventional onco-radiology

Diagnostic

- Diagnostic angiography DSA vascular morphology, neovascularisation, cancer vessels
- Guided biopsy
 - (US-,CT-,MR-,CXR) • FNAB – fine needle aspiration biopsy for cytology
 - core biopsy for histology

• Therapeutic

- Intravascular therapy DSA
 - TU embolisation,
 - TU chemoperfusion
 - Dilatation, stanting
- Tumor ablation (with radiofrequency-, (RFA) Laser wawe, percutan ethanol injection (PEI), focused US)

DSA -TH Localized cancer

Chemoembolisation Cancer vessels have been closed

Chemoperfusion

Cancer vessels were demolished

Embolisation of Coecum AV malformation - because of bleeding-

CT– guided renal biopsy

Tasks of imaging in different phases of clinical oncology

RATIONALITY OF SCREENING

- Early diagnosis in preclinical stages
- To find high risk asymptomatic individuals
- To achieve higher cure rate

 90% of all breast cancer cases could be cured if diagnosed early and treated accurately

Sensitivity of mammography

- Reported data: 80-85%
- In adipose breast: 99%

BASIC screening method MAMMOGRAPHY

If breast density is increased, sensitivity will be decreased

For dens breast: US, MRI

Diagnostic procedures in **BREAST CANCER**

at symptomatic patients

- a) Mammography Analog / Digital
- b) US
- c) Guided biopsy: FNA for citology

core-, vacuum assisted for histology guided by US / mammography (stereotactic biopsy)

- a) MR-mammography (MP-MRI, DCE-MRI, DW-MRI)
- b) Localization before op.:
 - a) Radioguided localisation(ROLL) for occult lesion, SLNB
 - b) Hookwire-guided localization for non-palpable breast lesions
- c) Specimen mammography /US

```
d) CT / PET-CT – for staging
```


BREAST CANCER MULTIMODAL evaluation

X-ray-mgr

Mammography + US + biopsy Sv 85%, Sp 92-95% MR mammography: Sv 95%, Sp 86%

MR-mgr

Sentinel N Lymphoscintigraphy + + (Blue dye) + hystology (Sv94% NPV98%)

T/N: mammography / US / MRI /+sentinel N

LUNG CANCER

• Leading cancer death

- 1.3 million deaths / year worldwide
- Approximately 70% of cases are incurable at presentation, metastatic or locally advanced
- 16% overall 5 year survival

Theresa C. McLoud, MD Massachusetts General Hospital, Harvard Medical School

LUNG CANCER mortality calls for screening

- CT highly sensitive for lung nodes <1cm
- CT detects more cancers than CXR
- CT screening for lung cancer has mortality benefit
 - NSCLC: in Stage IA T<3cm, N0, M0 survival > 65%

- T<1cm, N0, M0 - survival > 80%

- High risk group > 30 packs / years of smoking > 55 age
- Annual controll low dose CT (LDCT minus 20-25% of standard dose)
- Follow up LDCT for growth
 - Volumetric measures CAD (computer assisted diagnosis)

Meaningful (36-53%) survival increasing in the low dose CT group

(Henschke study, 2011)

CT basic method

- Staging-
- **T-Acc 90%**

LUNG CANCER Multimodal imaging Clinical exam.: Bronchoscopy

CT guided

biopsy

Role of MRI Complementary, to evaluate the sites of mets, Brain, liver, spine

OUTON Spine met.

PET/CT staging N met Tu spread Residual TU Recidiva

Imaging in HEAD and NECK tumors

• US – for analysing neck masses

- Palpable neck mass: solid / cystic ?
- Thyroid
- Salivary glands
- Color- Doppler US
- Guided biopsy
- **CT- to evaluate the whole region** (from the skull base to the trachea bifurcation)
- <u>MP-MRI-</u> best modality to evaluate the local staging
- **PET/CT for whole body information** for distant TU spread, for residual /recurrant TU

CT MR US

Guided

Asp. Cyt.

- Acc >90%

Head & Neck Ca: MR/CT/US

- ",T" Accuracy: MR, CT >90%
- "N"- Accuracy: US 70%, CT80%, MR 80%

MR – "T" Acc: 95%

Clinically: mesopharynx ca T2 stage, operable MRI: TU extension into posterior scala, T4b stage, inoperable

Intracranial TU extension - CT/ MR

Perineural TU spread

Post RadioTherapeutic status in Head and Neck CA *Question: residual CA ? Multiparametric - MRI !*

RECTAL TUMOR Multimodal Imaging

- **US** –Transabdominal US for general abdominal information
 - Endorectal US intramural TU extension
- MP-MRI- best evaluation for tumor extension beyond the wall, to determine resection margin, complex pelvic -, and best liver information
- **CT** to evaluate advanced TU extension
- US/CT guided biopsy (liver)
- PET/CT for whole body information distant TU extension, for recurrant TU

EUS "T" Acc 90%

T1,T2,T2/3 Perirectal N

MDCT "T"Acc 70-85%

Liver (Acc 85%)

RECTAL Cancer MULTIMODAL evaluation

MRI

"T" infiltration Beyond the wall (Acc>90%) Resection border PPV 92%

> Liver Acc>90%

Imaging in **PROSTATE cancer (PC)**

Screening - **PSA** (prostate specific antigen) NOT reliable

- **US** for the first information and for guided biopsy
 - Transabdominal US general
 - Endorectal US prostate
 - Color- Doppler US

Color Doppler US may increase detection of PC

- MP-MRI for the accurate prostate and pelvic information, staging (for capsular penetration, for vesicula-, bladder-, other pelvic invasion, nodal status), recurrent ca, restaging
- Bone scan bone metastasis
- **CT** to evaluate advanced TU extension

MR is the best for local staging of PC

• **PET/CT** – for recidive cancer, for whole body information

Prostate cancer "T" Staging: MP-MRI (T2b)

T2-w axi

T2-w cor

DCE-MRI

DW-MRI-b1000

ADC-MRI

TIC

Imaging in gynecological tumors

- **US** for the first information
 - Transabdominal US
 - Endovaginal US
- MRI- for the accurate organ and pelvic information, staging
- CT- to evaluate advanced TU extension- OVARIAN!
- Guided /UH, CT/ biopsy
- **PET/CT** for whole body information distant TU extension, for recurrant TU

Cervix ca MR-ACC:>95%

Gynecologycal – TU endovaginal US MR, CT (ovarien)

Ovarian MR-ACC: 89-99%"

Endomertium ca MR-ACC:> 90%

Conclusion 1.

- The role of conventional radiography in the evalutaion of tumor is limited
- US is excellent modality for the evaluation of soft tissues, abdominal organs and excellent tool for tissue sampling, BUT not milestone!
- MRI/CT are basic modalities for cancer evaluation
- High quality CT / MRI is required for the HR imaging
- CT and MRI are complementary imaging tools
- MRI has the advantage of superior visualization of soft tissues,
- MDCT has the advantage of quicker examination (less motion artifacts) and superior visualization of cortical bone
- PET/CT's main value is to detect distant metastases, recurrent diseases, to evaluate therapy response

Optimal treatment is based on multidisciplinary decision Cancer care: Image-guided oncologic treatment

Conclusion 2.

- Optimal treatment is based on multidisciplinary decision
- In the Oncologic Decision Process:
 - the diagnostic radiologists,
 - the surgical oncologists,
 - the clinical oncologists and
 - the radiotherapeutics need to strengthen the process from the diagnostic imaging to the therapeutic imaging, for the best patient care
- Image-guided oncologic treatment

Radiologist has an important roll

and our responsibility is very high!

MD-CT

3T-MR DW-MR PET/CT PET/MR Dyn-CT MRSI

Determination? Evaluation? Validation?

interventional radiology